|
|
@@ -3,6 +3,8 @@ import unittest |
|
|
|
import unittest.mock as mock |
|
|
|
import pipeline.adjusters as adjusters |
|
|
|
|
|
|
|
from test.mocks import MockFeature, MockInterval |
|
|
|
|
|
|
|
class TestAdjuster(unittest.TestCase): |
|
|
|
"""Test the generic Adjuster class""" |
|
|
|
|
|
|
@@ -36,7 +38,7 @@ class TestTargetTimeAdjuster(unittest.TestCase): |
|
|
|
tta = adjusters.TargetTimeAdjuster() |
|
|
|
features = [] |
|
|
|
for i in range(1, 5): |
|
|
|
features.append(mock.Mock(duration=i*1.0)) |
|
|
|
features.append(make_feature(duration=i*1.0)) |
|
|
|
|
|
|
|
self.assertEqual(tta._features_total_time(features), 10.0) |
|
|
|
self.assertEqual(tta._features_total_time([]), 0.0) |
|
|
@@ -175,3 +177,106 @@ class TestTargetTimeAdjuster(unittest.TestCase): |
|
|
|
make_feature(duration=1.0, score=1.0) |
|
|
|
] |
|
|
|
self.assertEqual(tta._sort_by_score_time(features), [features[2], features[3], features[0], features[1]]) |
|
|
|
|
|
|
|
|
|
|
|
def test_adjust_changes(self): |
|
|
|
"""Test adjusting of list of Features using TTA -- changes to list of Features |
|
|
|
|
|
|
|
All cases have total time > target time. |
|
|
|
|
|
|
|
In the cases, specification is Feature(duration, score) |
|
|
|
Cases: |
|
|
|
- target = 30.0, margin = 0.0 |
|
|
|
+ [(15.0, 1.0), (10.0, 1.0), (12.0, 1.0)] --> [(15.0, 1.0), (12.0, 1.0)] # scores equal, drop smallest |
|
|
|
+ [(15.0, 2.0), (10.0, 2.0), (12.0, 1.0)] --> [(15.0, 1.0), (10.0, 1.0)] # drop lowest scoring (1) |
|
|
|
+ [(15.0, 1.0), (10.0, 1.0), (12.0, 2.0)] --> [(15.0, 1.0), (12.0, 2.0)] # drop lowest scoring (2) |
|
|
|
|
|
|
|
- target = 30.0, margin = 4.0 |
|
|
|
+ [(15.0, 1.0), (10.0, 2.0), (12.0, 1.0)] --> [(15.0, 1.0), (12.0, 1.0)] # not lowest scoring, but within margin |
|
|
|
+ [(16.0, 1.0), (16.0, 1.0), (1.0, 1.0), (1.0, 1.0)] --> [(16.0, 1.0), (16.0, 1.0)] # drop multiple lowest scoring, shortest duration |
|
|
|
|
|
|
|
""" |
|
|
|
# target 30.0, margin 0.0 cases |
|
|
|
target, margin = 30.0, 0.0 |
|
|
|
|
|
|
|
with self.subTest(f"target {target} margin {margin}"): |
|
|
|
with self.subTest("scores equal"): |
|
|
|
features = [ |
|
|
|
make_feature(duration=15.0, score=1.0), |
|
|
|
make_feature(duration=10.0, score=1.0), |
|
|
|
make_feature(duration=12.0, score=1.0) |
|
|
|
] |
|
|
|
tta = adjusters.TargetTimeAdjuster(features=features, target_time=target, margin=margin) |
|
|
|
expected = [features[0], features[2]] |
|
|
|
output = tta.adjust() |
|
|
|
self.assertEqual(len(output), 2) |
|
|
|
self.assertEqual(output, expected) |
|
|
|
self.assertEqual(tta.features, expected) |
|
|
|
|
|
|
|
with self.subTest("drop lowest scoring (1)"): |
|
|
|
features = [ |
|
|
|
make_feature(duration=15.0, score=2.0), |
|
|
|
make_feature(duration=10.0, score=2.0), |
|
|
|
make_feature(duration=12.0, score=1.0) |
|
|
|
] |
|
|
|
tta = adjusters.TargetTimeAdjuster(features=features, target_time=target, margin=margin) |
|
|
|
expected = [features[0], features[1]] |
|
|
|
output = tta.adjust() |
|
|
|
self.assertEqual(len(output), 2) |
|
|
|
self.assertEqual(output, expected) |
|
|
|
self.assertEqual(tta.features, expected) |
|
|
|
|
|
|
|
with self.subTest("drop lowest scoring (2)"): |
|
|
|
features = [ |
|
|
|
make_feature(duration=15.0, score=1.0), |
|
|
|
make_feature(duration=10.0, score=1.0), |
|
|
|
make_feature(duration=12.0, score=2.0) |
|
|
|
] |
|
|
|
tta = adjusters.TargetTimeAdjuster(features=features, target_time=target, margin=margin) |
|
|
|
expected = [features[0], features[2]] |
|
|
|
output = tta.adjust() |
|
|
|
self.assertEqual(len(output), 2) |
|
|
|
self.assertEqual(output, expected) |
|
|
|
self.assertEqual(tta.features, expected) |
|
|
|
|
|
|
|
# target 30.0, margin 4.0 cases |
|
|
|
target, margin, strategy = 30.0, 4.0, adjusters.TargetTimeAdjuster._STRATEGY.ABSOLUTE |
|
|
|
|
|
|
|
with self.subTest(f"target {target} margin {margin}"): |
|
|
|
with self.subTest("not lowest scoring, but within margin"): |
|
|
|
# explanation: dropping the 10.0 feature would put us at 27.0, which is within the margin (26.0, 34.0) |
|
|
|
features = [ |
|
|
|
make_feature(duration=15.0, score=1.0), |
|
|
|
make_feature(duration=10.0, score=2.0), |
|
|
|
make_feature(duration=12.0, score=1.0) |
|
|
|
] |
|
|
|
tta = adjusters.TargetTimeAdjuster(features=features, target_time=target, |
|
|
|
margin=margin, strategy=strategy) |
|
|
|
expected = [features[0], features[2]] |
|
|
|
output = tta.adjust() |
|
|
|
self.assertEqual(len(output), 2) |
|
|
|
self.assertEqual(output, expected) |
|
|
|
self.assertEqual(tta.features, expected) |
|
|
|
|
|
|
|
with self.subTest("drop multiple lowest scoring, shortest duration"): |
|
|
|
# explanation: dropping the 1.0 features would put us at 32.0, which is within the margin (26.0, 34.0) |
|
|
|
features = [ |
|
|
|
make_feature(duration=16.0, score=1.0), |
|
|
|
make_feature(duration=16.0, score=1.0), |
|
|
|
make_feature(duration=1.0, score=1.0), |
|
|
|
make_feature(duration=1.0, score=1.0), |
|
|
|
make_feature(duration=1.0, score=1.0), |
|
|
|
make_feature(duration=1.0, score=1.0) |
|
|
|
] |
|
|
|
tta = adjusters.TargetTimeAdjuster(features=features, target_time=target, |
|
|
|
margin=margin, strategy=strategy) |
|
|
|
expected = [features[0], features[1], features[2], features[3]] |
|
|
|
output = tta.adjust() |
|
|
|
self.assertEqual(len(output), 4) |
|
|
|
self.assertEqual(output, expected) |
|
|
|
self.assertEqual(tta.features, expected) |
|
|
|
|
|
|
|
|
|
|
|
def make_feature(duration, score=1.0): |
|
|
|
"""Helper function to create a MockFeature from duration and score""" |
|
|
|
return MockFeature(interval=MockInterval.from_duration(duration), score=score) |