Преглед изворни кода

test: [TTA] add coverage of adjust()

Add test cases that require reducing the number of Features
main
Rob Hallam пре 2 месеци
родитељ
комит
a793fe08ce
1 измењених фајлова са 106 додато и 1 уклоњено
  1. +106
    -1
      test/test_adjusters.py

+ 106
- 1
test/test_adjusters.py Прегледај датотеку

@@ -3,6 +3,8 @@ import unittest
import unittest.mock as mock
import pipeline.adjusters as adjusters

from test.mocks import MockFeature, MockInterval

class TestAdjuster(unittest.TestCase):
"""Test the generic Adjuster class"""

@@ -36,7 +38,7 @@ class TestTargetTimeAdjuster(unittest.TestCase):
tta = adjusters.TargetTimeAdjuster()
features = []
for i in range(1, 5):
features.append(mock.Mock(duration=i*1.0))
features.append(make_feature(duration=i*1.0))

self.assertEqual(tta._features_total_time(features), 10.0)
self.assertEqual(tta._features_total_time([]), 0.0)
@@ -175,3 +177,106 @@ class TestTargetTimeAdjuster(unittest.TestCase):
make_feature(duration=1.0, score=1.0)
]
self.assertEqual(tta._sort_by_score_time(features), [features[2], features[3], features[0], features[1]])


def test_adjust_changes(self):
"""Test adjusting of list of Features using TTA -- changes to list of Features

All cases have total time > target time.

In the cases, specification is Feature(duration, score)
Cases:
- target = 30.0, margin = 0.0
+ [(15.0, 1.0), (10.0, 1.0), (12.0, 1.0)] --> [(15.0, 1.0), (12.0, 1.0)] # scores equal, drop smallest
+ [(15.0, 2.0), (10.0, 2.0), (12.0, 1.0)] --> [(15.0, 1.0), (10.0, 1.0)] # drop lowest scoring (1)
+ [(15.0, 1.0), (10.0, 1.0), (12.0, 2.0)] --> [(15.0, 1.0), (12.0, 2.0)] # drop lowest scoring (2)

- target = 30.0, margin = 4.0
+ [(15.0, 1.0), (10.0, 2.0), (12.0, 1.0)] --> [(15.0, 1.0), (12.0, 1.0)] # not lowest scoring, but within margin
+ [(16.0, 1.0), (16.0, 1.0), (1.0, 1.0), (1.0, 1.0)] --> [(16.0, 1.0), (16.0, 1.0)] # drop multiple lowest scoring, shortest duration

"""
# target 30.0, margin 0.0 cases
target, margin = 30.0, 0.0

with self.subTest(f"target {target} margin {margin}"):
with self.subTest("scores equal"):
features = [
make_feature(duration=15.0, score=1.0),
make_feature(duration=10.0, score=1.0),
make_feature(duration=12.0, score=1.0)
]
tta = adjusters.TargetTimeAdjuster(features=features, target_time=target, margin=margin)
expected = [features[0], features[2]]
output = tta.adjust()
self.assertEqual(len(output), 2)
self.assertEqual(output, expected)
self.assertEqual(tta.features, expected)

with self.subTest("drop lowest scoring (1)"):
features = [
make_feature(duration=15.0, score=2.0),
make_feature(duration=10.0, score=2.0),
make_feature(duration=12.0, score=1.0)
]
tta = adjusters.TargetTimeAdjuster(features=features, target_time=target, margin=margin)
expected = [features[0], features[1]]
output = tta.adjust()
self.assertEqual(len(output), 2)
self.assertEqual(output, expected)
self.assertEqual(tta.features, expected)

with self.subTest("drop lowest scoring (2)"):
features = [
make_feature(duration=15.0, score=1.0),
make_feature(duration=10.0, score=1.0),
make_feature(duration=12.0, score=2.0)
]
tta = adjusters.TargetTimeAdjuster(features=features, target_time=target, margin=margin)
expected = [features[0], features[2]]
output = tta.adjust()
self.assertEqual(len(output), 2)
self.assertEqual(output, expected)
self.assertEqual(tta.features, expected)

# target 30.0, margin 4.0 cases
target, margin, strategy = 30.0, 4.0, adjusters.TargetTimeAdjuster._STRATEGY.ABSOLUTE

with self.subTest(f"target {target} margin {margin}"):
with self.subTest("not lowest scoring, but within margin"):
# explanation: dropping the 10.0 feature would put us at 27.0, which is within the margin (26.0, 34.0)
features = [
make_feature(duration=15.0, score=1.0),
make_feature(duration=10.0, score=2.0),
make_feature(duration=12.0, score=1.0)
]
tta = adjusters.TargetTimeAdjuster(features=features, target_time=target,
margin=margin, strategy=strategy)
expected = [features[0], features[2]]
output = tta.adjust()
self.assertEqual(len(output), 2)
self.assertEqual(output, expected)
self.assertEqual(tta.features, expected)

with self.subTest("drop multiple lowest scoring, shortest duration"):
# explanation: dropping the 1.0 features would put us at 32.0, which is within the margin (26.0, 34.0)
features = [
make_feature(duration=16.0, score=1.0),
make_feature(duration=16.0, score=1.0),
make_feature(duration=1.0, score=1.0),
make_feature(duration=1.0, score=1.0),
make_feature(duration=1.0, score=1.0),
make_feature(duration=1.0, score=1.0)
]
tta = adjusters.TargetTimeAdjuster(features=features, target_time=target,
margin=margin, strategy=strategy)
expected = [features[0], features[1], features[2], features[3]]
output = tta.adjust()
self.assertEqual(len(output), 4)
self.assertEqual(output, expected)
self.assertEqual(tta.features, expected)


def make_feature(duration, score=1.0):
"""Helper function to create a MockFeature from duration and score"""
return MockFeature(interval=MockInterval.from_duration(duration), score=score)

Loading…
Откажи
Сачувај