Selaa lähdekoodia

feat: [wip] TargetTimeAdjuster set up structure & helpers

TargetTimeAdjuster will adjust a list of Features until it is within an optional
margin of a target total duration.

Helper functions:

 - _determine_margin() :: figure out the max and min cutoff times, considering
   margin and margin strategy (percent / absolute)
 - _features_total_time() :: basic sum of list of Features' durations

TODO: rename to TargetDurationAdjuster ? rename 'strategy' ??
main
Rob Hallam 2 kuukautta sitten
vanhempi
commit
b025f0ea10
1 muutettua tiedostoa jossa 86 lisäystä ja 1 poistoa
  1. +86
    -1
      pipeline/adjusters.py

+ 86
- 1
pipeline/adjusters.py Näytä tiedosto

@@ -10,6 +10,8 @@ For example:
TODO: Consider eg a generic PredicateAdjuster -- supply a predicate/lambda that will be used to determine whether to keep a Feature or not.
"""

from enum import Enum

class Adjuster():
"""Generic Adjuster class. Expects a list of Features and returns a list of Features."""

@@ -21,5 +23,88 @@ class Adjuster():
self.features = features


def adjust(self):
def adjust(self) -> list:
"""Adjust the Features. Override this method in subclasses."""
return self.features


class TargetTimeAdjuster(Adjuster):
"""Adjuster that drops Features until the target time is reached."""

_STRATEGY = Enum("MarginStrategy", ["ABSOLUTE", "PERCENT"])
_DEFAULT_TARGET_TIME = 60.0 # 1 minute
_DEFAULT_MARGIN = 10 # can be percent or absolute value

def _determine_margin(self, time: float, margin: float, strategy: _STRATEGY) -> tuple:
"""Determine the target time margins.

If the strategy is ABSOLUTE, the margin is a fixed value in seconds.
If the strategy is PERCENT, the margin is a percentage of the target time.

Returns a tuple of (min, max) times.

Pulled out for unit testing
"""
target_time_min = target_time_max = None

if strategy == self._STRATEGY.ABSOLUTE:
# both specified in seconds
target_time_min = time - margin
target_time_max = time + margin
elif strategy == self._STRATEGY.PERCENT:
target_time_max = time + (time * margin / 100)
target_time_min = time - (time * margin / 100)

return (target_time_min, target_time_max)

def _features_total_time(self, features: list) -> float:
"""Calculate the total duration of all Features.

Returns the total time in seconds.

Pulled out for unit testing.
"""
return float(sum([x.duration for x in features]))

def __init__(self, features: list=[],
target_time: int|float=_DEFAULT_TARGET_TIME,
margin: int|float=_DEFAULT_MARGIN,
strategy=_STRATEGY.ABSOLUTE):
"""Initialize the Adjuster with Features and a target time.

Default target time is 60 seconds (1 minute). Even if the desired target time is 60s exactly, it is recommended to specify it explicitly.
"""
super().__init__(features)
self.target_time = float(target_time)
self.margin = float(margin)
self.strategy = strategy

def adjust(self) -> list:
"""Drop Features until the target time within the margin is reached.

Approach:

Sort list of Features by score (primary) and by time (secondary).
Drop lowest scoring Features until the target time is reached;
if dropping a Feature would result in missing the margin, skip dropping that Feature
if no Features can be dropped without missing the margin,
drop the lowest scoring Feature until we are under the target time (with margin)

Returns a list of Features, and also modifies the internal list of Features.
"""
# check for early exit
if not self.features:
return []

# figure out our margins
target_time_min, target_time_max = self._determine_margin(self.target_time, self.margin, self.strategy)

# calculate total time of all Features
total_time = self._features_total_time(features=self.features)

# if we are already within the target time, return the Features as-is
if total_time <= target_time_max:
return self.features

# sort list of Features by score (primary) and by duration (secondary)
sorted_features = sorted(self.features, key=lambda x: (x.score, x.time))

Ladataan…
Peruuta
Tallenna