|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 |
- import subprocess
-
- class SourceMedia():
- """Source media used by eg feature extractors. This is a list of Source objects.
-
- JSON type schema:
- [{
- "source": "/path/to/video.mp4",
- "path": "/path/to/video.mp4",
- "provider": "FileInputJSON"
- },
- {
- "source": "http://example.com/video.mp4",
- "path": "/path/to/downloaded_video.mp4",
- "provider": "InputYAML"
- }]
-
- It should be possible to combine/merge/aggregate multiple SourceMedia into one
- TODO: consider if we actually want that or if we just loop over a list of >0 SourceMedia
-
- Iterating over a SourceMedia object should return a list of Source objects.
- """
-
- def __init__(self, sources=[]):
- self.sources = sources
-
- def __iter__(self):
- return iter(self.sources)
-
- class Source():
- """A Source is a single media file (eg), used to populate SourceMedia objects.
-
- JSON type schema:
- {
- "source": "/path/to/video.mp4",
- "path": "/path/to/video.mp4",
- "provider": "FileInputJSON"
- }
-
- Instance variables:
-
- source -- the source of the media file (eg, a URL or a local path)
- path -- the path to the media file
- provider -- the provider of the media file (eg, "FileInputJSON")
-
- Accessing the object should return the path to the media file.
-
- Methods:
-
- duration() -- return the duration of the media file (uses ffprobe, result is cached)
-
- Notes:
- - source and path may be the same, for example in the case of a local file
- """
- _duration = None
-
- def __init__(self, source, path, provider):
- if not source:
- raise ValueError("Source must be provided") # TODO: #API -- decide if this is necessary
- self.source = source
- if not path:
- # we need a file to work on for the rest of the pipeline
- raise ValueError("Path must be provided")
- self.path = path
- if not provider:
- raise ValueError("Provider must be provided") # TODO: #API -- decide if this is necessary
- self.provider = provider
-
- def __str__(self):
- """See: 'accessing the object should return the path to the media file'"""
- return self.path
-
- def __repr__(self):
- return f"Source({self.source}, {self.path}, {self.provider})"
-
- def duration(self):
- """Return the duration of the media file at self.path (result is cached)"""
- return self._duration or self._get_duration(self.path)
-
- def _get_duration(self, file):
- """Use ffprobe to get the duration of the media file at self.path and cache result (_duration)
-
- usage: ffprobe -v error -show_entries format=duration -of default=noprint_wrappers=1:nokey=1 <file>
- """
- # test if file exists
- try:
- with open(file) as _:
- pass
- except FileNotFoundError:
- raise FileNotFoundError(f"File not found: {file}")
- # cache the result
- self._duration = 0.0 or float(subprocess.check_output(["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", file]))
- return self._duration
-
- def to_json(self):
- """Return a dict representation of the source for JSON encoding
-
- @see video_producers.py:PipelineJSONEncoder
- """
- return dict(source=self.source, path=self.path, provider=self.provider)
-
-
-
- class Interval():
- """An interval of time in a media file
-
- This can be defined by a start and end time, a start time and a duration, or an end time and a duration.
-
- Instance variables:
-
- start -- the start time of the interval
- end -- the end time of the interval
- duration -- the duration of the interval (end - start)
-
- Notes:
-
- Sorts by start time, then end time
- """
- # TODO: decide if ABC or will be used directly
- # TODO: have default duration for intervals set by config
- # TODO: consider if we want to permit adjusting intervals (eg, start time, end time, duration) [probably yes]
- # NOTE: if we have more ways of defining, we could consider multipledispatch?
- # TODO: consider if we want to keep a reference to the media file (source) in the interval
-
- DEFAULT_DURATION = 5 # seconds
- DEFAUT_PRECISION = 3 # decimal places
-
- def __init__(self, start=None, end=None, duration=None):
- if start is None and end is None and duration is None:
- raise ValueError("Two of start, end, or duration must be provided")
- if start is not None and end is not None and duration is not None:
- raise ValueError("Only two of start, end, or duration may be provided")
-
- # start and end
- if start is not None and end is not None:
- # some trivial validation
- if start > end:
- raise ValueError("Start time must be before end time")
- self.start = start
- self.end = end
- self.duration = end - start
-
- # start and duration
- elif start is not None and duration is not None:
- if duration < 0:
- raise ValueError("Duration must be positive")
- self.start = start
- self.duration = duration
- self.end = start + duration
-
- # end and duration
- elif end is not None and duration is not None:
- if duration < 0:
- raise ValueError("Duration must be positive")
- self.end = end
- self.duration = duration
- self.start = end - duration
-
- # set precision
- self.start = round(self.start, self.DEFAUT_PRECISION)
- self.end = round(self.end, self.DEFAUT_PRECISION)
- self.duration = round(self.duration, self.DEFAUT_PRECISION)
-
- @classmethod
- def from_start(cls, start=None):
- """Create an interval from a start time using the default duration"""
- return cls(start=start, duration=cls.DEFAULT_DURATION)
-
- @classmethod
- def from_end(cls, end=None):
- """Create an interval from an end time using the default duration"""
- return cls(end=end, duration=cls.DEFAULT_DURATION)
-
- def __repr__(self):
- return f"Interval({self.start}, {self.end}, {self.duration})"
-
- def __lt__(self, other):
- if self.start == other.start:
- return self.end < other.end
- return self.start < other.start
-
- def to_json(self):
- """Return a dict representation of the interval for JSON encoding
-
- @see video_producers.py:PipelineJSONEncoder
- """
- return dict(start=self.start, end=self.end, duration=self.duration)
-
- # --------------------------------------------------------------
- # TODO: handle bad cases, eg negative duration, start > end, etc
- # --------------------------------------------------------------
-
- def move_start(self, new_start: float | int, relative: bool = False):
- """Update start time of Interval, keeping end time constant (& so modify duration)"""
- if relative:
- self.start += new_start
- else:
- self.start = new_start
- self.duration = round((self.end - self.start), self.DEFAUT_PRECISION)
-
- def move_end(self, new_end: float | int, relative: bool = False):
- """Update end time of Interval, keeping start time constant (& so modify duration)"""
- if relative:
- self.end += new_end
- else:
- self.end = new_end
- self.duration = round((self.end - self.start), self.DEFAUT_PRECISION)
-
- def update_duration(self, new_duration: float | int, relative: bool = False):
- """Update duration of Interval, keeping start time constant (& so modify end time)"""
- if relative:
- self.duration += new_duration
- else:
- self.duration = new_duration
- self.end = self.start + self.duration
-
- class Feature():
- """A feature extracted from a media file ("has a" Interval)
-
- This extends intervals by adding other fields, such as the feature source and 'score'
-
- Instance variables:
-
- interval -- Interval: time of feature in the media file
- source -- the source of the feature (ie feature extractor) (default: "unknown")
- path -- the path to the media file
- score -- the score of the feature (eg laughter confidence score, [0, 1] = { x ∈ ℝ | 0 ≤ x ≤ 1 }) (default: 0.0)
-
- Notes:
-
- - score is notionally in the closed interval [0, 1], but this is not enforced -- it is up to the feature extractor to ensure this (or use scores outside this range if desired -- eg a feature manually selected by user input might have a score of 2.0 so it is sorted 'above' other features)
- - sorts based on interval, then source, then score
- - path should never be unknown, since we need it to make clips from
- """
- # TODO: consider renaming score to something more generic
-
- def __init__(self, interval=None, source=None, score=None, path=None):
- """Create a feature with an interval, source, and score
-
- Expects a ready-made interval; source and score are optional
- """
- if interval is None:
- raise ValueError("Interval must be provided")
- self.interval = interval
-
- if path is None:
- raise ValueError("Path must be provided")
- self.path = path
-
- if source is None:
- source = "unknown"
- self.source = source
-
- if score is None:
- score = 0.0
- self.score = score
-
- # classmethods for creating a feature with an interval directly
- # which delegate to the Interval class :)
-
- @classmethod
- def from_start(cls, start=None, source=None, score=None, path=None):
- return cls(interval=Interval.from_start(start), source=source, score=score, path=path)
-
- @classmethod
- def from_end(cls, end=None, source=None, score=None, path=None):
- return cls(interval=Interval.from_end(end), source=source, score=score, path=path)
-
- def __repr__(self):
- return f"Feature({self.interval}, {self.source}, {self.score})"
-
- def __lt__(self, other):
- """Sort based on interval, then source, then score"""
- if self.interval == other.interval:
- if self.source == other.source:
- return self.score < other.score
- return self.source < other.source
- return self.interval < other.interval
- def to_json(self):
- """Return a dict representation of the feature for JSON encoding
-
- @see video_producers.py:PipelineJSONEncoder
- """
- return dict(interval=self.interval.to_json(), source=self.source.to_json(),
- feature_extractor=self.feature_extractor, score=self.score)
|